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In recent years a number of high quality measurements, at different state parameters, of 
the dynamic structure factor have been made. These measurements justify two new 
interpretive approaches. In the first we deduce the magnitude and frequency dependence 
of the memory function of the current-current correlation function without performing 
the theoretically correct, but errorful, Fourier Laplace double transform procedure. This 
can be achieved',' at a number of special points, and is essentially a direct measurement 
of this quantity in momentum-frequency space. For the first time the properties of 
collective modes in fluids can be discussed in a systematic way and this is done for dense 
krypton gas and for liquid argon. 

The same data on krypton and argon may be used to assess the role played by many 
body forces in dynamic properties because the true pair interaction potentials for these 
cases are accurately known. Thus in the second approach a high quality computer 
simulation for krypton, using the true pair potential, is compared to the experimental 
spectra over an appropriate range of momentum t r a n ~ f e r ~ . ~ .  Anomalous effects are 
observed over the same ranges as novel memory function effects were observed, and are 
related to the onset of collective mode behaviour. 

1 INTRODUCTION 

Although short wavelength collective effects in disordered systems are 
difficult to investigate experimentally, there are a number of theories 
describing their behaviour. Because one of the most informative 
experimental quantities is the dynamic structure factor, S(Q, w )  or 
Fourier transform of the time dependent pair correlation function, these 
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theories often present S(Q, o) in a form which exhibits collective 
behaviour explicitly. The most common expression is 

where hQ and ho represent the momentum and energy used to excite 
the system. M(Q, w )  is a (complex) damping function, or a memory 
function for the current-current correlation function or can be given 
other meanings. The frequency o is conveniently expressed in terms of 
the root mean square frequency oo = ,/kBTQ2/MS(Q), where S(Q) is 
the static structure factor and M the atomic mass. 

The damping function can, in principle, be determined from data on 
S(Q, o). Several theories suggest that the real and imaginary parts of 
M(Q, w )  are simpler functions of Q and o, than the dynamic structure 
factor itself. The interesting physical information about collective 
behaviour is contained in M(Q, o), according to this view. Egelstaff and 
Glaser’ point out that an even simpler function is the inverse function 

* and in terms of this function Eq. (1) may be rewritten as (with 
(T = (TI + (TJ 

(3) 

where x = w/oo,  c = noOS(Q, o -, O)/S(Q) = M(Q, O ) / o ,  and a/c = 
w,/M(Q, w). They also point out that in many experimental situations 
the frequency range of M(Q, o) or a(Q, o) is much wider than that of 
S(Q, o) so that the measured data do not contain enough information 
to allow the integral relationship between the real and imaginary parts 
of M(Q, w )  to be exploited. For this reason it is necessary to solve Eq. 
(3) for the two functions independently. This seemingly impossible task 
was accomplished by Egelstaff and Glaser’-’ by taking advantage of the 
mathematical properties of a(Q, w )  and of Eq. (3). Their method will be 
summarized in the next section. 

In Section 3 some experimental data on dense krypton gas and on 
some fluid states of argon will be presented. The behaviour of D will be 
discussed in terms of collective effects. Computer simulation  result^^.^ 
for two of the states of krypton will also be presented. Because these 
results were obtained using the true pair potential for krypton, the 
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COLLECTIVE EFFECTS IN FLUIDS 295 

differences between them and the experimental results arise from the 
many-body potential terms omitted from the simulation. Thus the effect 
of these terms may be observed in both S(Q,  w) and a(Q, w). 

2 THEORETICAL COMMENTS 

Equations (1) and (3) are written in a form such that if M(Q, w )  is small, 
S(Q, w )  will exhibit the sharp side peak characteristic of a well defined 
collective mode. For larger values of M(Q, a), or smaller values of 
a(Q, o), the mode is broadened and its definition is not well specified. If 
the frequency dependences of o1 and a2/w are slight, they may be 
assumed to be approximately independent of frequency in the neigh- 
bourhood of the frequency of the mode. In order to define a mode, we 
shall represent S(Q,  w )  as the sum of three Lorentzians (a central peak 
and two side peaks) with almost constant coefficients in the neighbour- 
hood of the mode frequency. This expression is 

(4) 
where A ,  and Z ,  are the amplitude and the width of the central peak 
and A,, + iA,, are the complex amplitudes of side peaks for modes of 
frequency w, + iZ,. Any reasonable definition of a mode may be 
expressed in terms of these parameters. For example Glaser and 
Egelstaff' suggest an acceptable definition would be 

A,, > O  and us> Z ,  ( 5 )  

Because there are more parameters in Eq. (4) than in Eq. (3), we may 
write any condition such as (5) as a relationship between al/c and a;/c 
(where a8 = a&). Thus a measurement of a1 and a, at a frequency 
near 0, is sufficient to determine whether the condition ( 5 )  is satisfied, 
which is one example of the utility of a measurement of 0. 

To solve Eq. (3) for a = a1 + ia, in frequency space without using 
Laplace transform methods, Egelstaff and Glaser' wrote it as a 
quadratic equation in a1 and 0,. Then by noting that a1 and a2/w were 
real, continuous single-valued functions of w (and a1 > 0 and a, > 0 at 
large w), and by assuming that they were slowly varying functions of w 
(so that only the zero and first derivatives with respect to o need by 
considered at any point) they solved this equation at six widely spaced 
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frequencies. These special frequencies cover a range wider than covered 
by existing S(Q,  o) measurements, although they do not extend over the 
complete range of o(Q,w). However, usually four or five may be 
determined from existing experiments, and a reasonable improvement 
in the quality and extent of the data may allow the higher frequency 
points to be determined. 

Their solutions are (where no = S(Q)/nw,S(Q, w)) 

a t x = 0 ;  o1 = 1 

at x = 1 ;  o1 = c/no 

at approximately x = 0.4, 1.7 and 3.5 

ay: ao; 
ax2 ax2 

- has a solution x = x, ,  

where y z ( x )  = (kc) no & 2x(1 - x2)/2x(1 - x 2 ) 2  is an experimentally 
determined quantity. This solution determines the value of y: (x"') = 
o:, and of 0 ,  = n0c/2(1 - x i ) 2 .  This process gives three points. 

at  approximately x = 2.5 

has a solution x = x,, aY1 801 

ax2 ax2 
-=- 

where y 1  = not/( 1 - x2)2 is another experimentally determined quanti- 
ty. This solution determines the value of y,(x,) = o1 and also 0; = 

Egelstaff and Glasers' solutions imply that the curvature of y1 or y:  
is substantially greater than that of o1 or 05 at x = x,, and that the 
curvature of o: may be neglected over an experimentally significant 
range of x about x = 0 or 1 .  These conditions are found to hold in 
practice. As an initial approximation they assumed that a o l / a x 2  and 
do;/ax2 were negligible, and then used the initial value to estimate these 
derivatives. Frequently it was found that the initial solution was 
accurate enough in view of the experimental errors on y, and y: . This 
method allows the real and imaginary parts of the damping function to 
be measured for the first time, and because algebraic results only are 

c / (x;  - 1). 
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used it also allows the errors in the derived quantities to be related to 
the errors in S(Q, o). 

As an example’, we show in Figure 1 models of S(Q, o) for high Q 
and low Q together with the calculated c1 and ~8 functions using the 
integral method. The six points obtained through the above analysis are 
marked on these curves, as are (by dashed lines) the functions y, and 
y:. It can be seen that for the Gaussian S ( Q , u )  the six points are 
distributed in an approximately uniform way along the x-axis, whereas 
for the Brillouin model they are bunched in regions of high intensity in 
S(Q, a). In both cases they extend to a region of negligible intensity in 
S(Q,  o), and provide a reasonable representation of the Q curve over the 
useful range of u. However it is evident that for real data extending to 
about 2 % of the maximum intensity, a large part of Q, or u; would lie 
beyond the o-limit in S ( Q , o ) .  In further support of their approach 
Egelstaff and Glaser’ give analytical expressions for o1 and 08 which 
may be used with any smooth function fitted to the data and extrapo- 
lated to large u. This procedure allows an estimate of the shape of o1 
and Q: to be obtained, and so checks the consistancy of the analysis. 

Finally, we note that this method of data reduction is not unique to 
S ( Q , o )  and could be employed in a number of other experimental 
cases. For example, if a generalized Brownian motion equation is used 
to describe the motion of an atom (see Ref:9, Eq. 40), the generalized 
(complex) diffusion coefficient D(Q, o) is given by 

WQ, 0) = o/nQ2S,(Q, 0) 
This illustrates the physical meaning of 0, which may apply to the 
coherent case over a suitable range of Q. 

3 EXPERIMENTAL RESULTS 

Glaser and Egelstap consider a number of S(Q, o) experiments which 
include dense krypton gas (p = 10.6 and 13.8 atoms/nm3) at 297 K, and 
expanded argon liquid at 120K (p = 17.6 and 20.1 atoms/nm3). They 
found that in every case for Q above the principal maximum in S(Q) and 
for all measured Q’s for low density cases, the dependence of u1 and 
on frequency was very slight so that they were constants within the 
experimental errors in many cases. We shall compare some of these 
results with a computer simulation of krypton (Egelstaff et aL3 and 
Salacuse et d4, respectively), and with other argon experiments by 
Verkerk’ and Skold et d6 at 120 K and 85.2 K respectively and at a 
common density of 21.5 atoms/nm3. The frequency dependence of these 
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COLLECTIVE EFFECTS IN FLUIDS 299 

data is not discussed, but points at different frequencies (see Figure 1) 
are selected to illustrate particular questions. 

a) Krypton: At the gas density 10.6 atoms/nm3 the real part u1 is 
close to unity for w < 20, and 0.4 < Q < 3.2A- as illustrated in Ref. 2. 
The imaginary part, u:, is -0.3, and varies with Q having a minimum 
for Q near 1.3A-'. The computer simulation data3 for this state show a 
similar behaviour for u1 and for the overall level of n:. But the 
minimum in 0: is near 1.8A-' and appears to be narrower, although 
improved simulation data are needed. Because the simulation was 
carried out with a realistic pair potential for krypton these differences 

b 
0.5 

Figure 2 (a) The real and imaginary parts of the inverse function u(Q. o) for dense 
krypton gas at 297K and p = 13.8 atoms/nm3. The circles denote the experimental 
values while the crosses denote the molecular dynamics simulation+. (b) The ratio of 
mean times for structural relaxation (z,) to that for memory relaxation ( rJ ,  which is 
related' to the real and imaginary parts of u as o + 0. This ratio is shown for both the 
experimental and simulation data. 
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might be attributed to many body effects. They are larger and more 
significant, however, at the higher density of 13.8 atoms/nm3. This is 
shown in Figure 2a, where cl and 0: for small w are plotted against Q. 
The experimental and simulation results are similar at high Q with 
values similar to figure la. At low Q they show effects reminiscient of 
the change in intensity between figures l a  and lb. Also for Q < 1.3A-', 
there is a sharp difference between the two sets of data. This is perhaps 
more evident in Figure 2b where the ratio' of mean times for the 
intermediate scattering function and the memory or damping function 
are plotted. There is a peak in the experimental data at Q - 1.3A-' 
which is not evident in the simulation; and is due to the minimum in 0; 
at this point. 

At Figure 3 we show a comparison4 of S(Q, w )  itself for Q = 1.8A-' 
and smaller values. It is seen that departures from the simulation occur 
for Q = 1.3A-' and that here the experimental curves are sharper. The 
difference becomes large as Q becomes smaller, and suggests that a side- 
peak will be seen at  slightly lower Q. We show in Figure 4 that, using 
condition (5 ) ,  collective modes are strongly damped at Q = 1.3A- and 
are allowed to propagate at lower values of Q. In the cases of the two 
simulations and the 10.6 atoms/nm3 experiment, none of the data for 
Q 2 0.6A satisfy (5 ) .  If both the experimental and simulated data are 
correct, these results show that many body forces slow down longitu- 
dinal atomic motions and encourage the propagation of collective 
modes. 

b) Argon: Results for the densities 17.6 and 20.1 atoms/nm3 have 
been published in Ref. 2. The real part c1 is close to unity for all 
experimental values of Q and w, while the imaginary part is almost 
independent of w. Its dependence on Q is shown in Figure 5 (for the 
second frequency point in Figure 1) and compared to that for argon at 
the triple point. Although the triple point data6 are not recent and are 
of lower quality, it is clear that both 0: and o1 change significantly with 
the change of state. A smooth line has been drawn through the higher 
quality data, for the sake of clarity. The data of Verkerk' at  the triple 
point density and a temperature of 120 K are shown also. While they do 
not extend to the higher Q values, they are sufficient to show that a 
small change of density at 120 K is not significant. The trend at  low Q is 
for increasing values with decrease of temperature, and this suggests the 
onset of collective modes. This point was made in a quantitative way in 
Figure 4, where the locus of the data relative to the condition (5) is 
shown. At low Q (marked on the figure) this condition is satisfied. 

Finally for any pair of values of (al and 0;) the collective mode 
frequency (ws in Eq. (4)) may be calculated. These data are shown in 
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q=1.55 A-1 

. '. ._ . _ .  . ..* . .. .oo I I 1 ' 
0 2 4 6 8 1 0 1 2  

.05 

q=1.30 

.03 

Ti - - n 3 .03 
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. 0 4 ( L  * .  q=1.05 

.02 . 
* . .  - 

3 

q=0.80 A-1 

.05 1 '*:\ . . .. 

.04 
, , , 

.oo 
0 2 4 6 8 10 1 2 1 4  

Freauencv o 

Figure 3 The dynamic structure factor S(Q,  o) folded with the experimental resolution 
function R(o) for the experimental krypton data4 (shown by solid circles) and the 
simulation data4 (shown by the full line). The Q are taken from the peak of S(Q)-at 
1.8A-' to lower values. 
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I I I I I / ‘1’” 
0 0.2 0.4 0.6 

Figure 4 The real and imaginary parts of the inverse function plotted against each other. 
The condition ( 5 )  for propagating modes is shown as a full line-points lying inside the 
line violate this condition. Dashed lines through the experimental data on krypton and 
argon are shown (densities and Q values at the intersection with the full line are 
marked). The data for the two computer simulations of krypton all lie inside the full 
line, as do the data for krypton at 10.6 atoms/nm3. 

Figure 6 for the densities 20.1 and 17.1 atoms/nm3 at 120 K and also for 
the triple point data. The frequency chosen was the fourth point in 
Figure 1, which is close to ws. The condition (5)-Figure 4-would 
allow modes over a small region of this figure; other conditions might 
allow a wider range. It is clear that while the general level is similar for 
all sets of data, there is a difference at Q N 2A- which is the position of 
the principal maximum of S(Q).  In the 17.1 atoms/nm3 case the modes 
are overdamped, while at  the triple point they are not. The 20.1 
atoms/nm3 case lies between the other two. For Q near the maximum of 
S(Q)  the ratio increases as cr: decreases, and on Figure 4 they would 
move towards the overdamped region. Thus in this case the ratio os/oo 
rises before the overdamped region is reached, which would be con- 
sistant with the interpretation of the principal maximum in S(Q)  as a 
point where the momentum given to the system (hQ) may be shared 
between the system as a whole and “transverse or shear modes”. This 
approximation, which is similar to that made for phonons in crystals, 
leads’ to significant intensity for scattering at frequencies far away from 
zero. 
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I I I I Q I 

1 2 3 4 A-1 

ARGON - p=20.1 atomsinm3 T=120 K 
p=21.5 atornshm3 T=l20 K 
p=21.5 atorns/nm3 T=85.2 K 

02 

0.5 

X X 

X X 

X 
X X x x  x 

, I I , Q  

X 

X 
1 3 4 A-1 

Figure 5 The real and imaginary parts of the inverse function for dense liquid argon (full 
lineZ is for p = 20.1 atoms/nm3 and 120K, while crosses are for p = 21.5 atoms/nm3 
and 85.2 K and solid circles for this density at 120 K). These data are for the second 
frequency point in Figure 1. 

4 CONCLUSIONS 

A new method of measuring the real and imaginary parts of a response 
function was proposed' and tested on experimental data'. In this paper 
this method is applied in several further cases in an attempt to find the 
cenditions leading to the propagation of collective modes. The conclu- 
sions are largely independent of the particular condition used to show 
the existence of a mode, since all reasonable conditions, proposed in 
Refs 1 or 2, block out areas in the same part of Figure 4. 
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3 I 
*.*I" 6 

01 I 1 I Q ,  
1 2 3 4 Aml 

t 
T=120 K p=20.1 atoms/nm3 

T=l20 K p=l7.1 atorns/nm3 
t 

ARGON T=85.2 K p=21.5 atoms/nm3 

I ** - .  I I I 

2 3 4 Q 5 A-l 

Figure 6 The ratio of collective mode frequency us to the root mean square frequency 
wo for liquid argon at the two temperatures. Solid circles show data at p = 20.1 or 17.1 
atoms/nm3 and 120K. while crosses show data at p = 21.5 atoms/nm3 and 85.2K. 
These data are for the fourth frequency point shown in Figure 1, which is close to us. 
The dashed lines indicate the trend of the solid circles near the principal peak of S(Q). 
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COLLECTIVE EFFECTS IN FLUIDS 305 

It was demonstrated that for dense krypton gas the on-set of 
collective mode behaviour occurs for Q < 0.9 A, whereas in the com- 
puter simulation no such effect was seen. This was attributed to the 
contribution from many body terms in the interatomic potentials. In 
the case of argon trends similar to those in krypton were seen, and the 
onset of collective modes showed the expected greater likelihood for 
increases in density and decreases in temperature. However these trends 
have been made quantitative by the new method. The overdamped 
behaviour seen in expanded liquid argon ( p  = 17.1 atoms/nm3 in 
Figure 6 )  for Q near the maximum in S ( Q )  is reversed in dense liquid 
argon, and this might possibly be attributed to “solid-like’’ transverse 
mode effects. 

The power of the new method has been demonstrated in two ways. 
First in providing a vehicle to compare and interpret numerous (8) sets 
of S(Q,  o) data, and secondly in providing a way of targeting specific 
problems in a quantitative way. It is hoped that this will lead to a better 
understanding of a historically complex subject. To improve the present 
work requires more and better computer simulations, particularly using 
the realistic pair potential for argon. If the Lennard-Jones potential 
gives agreement’ with the data it is likely that many body forces are 
significant in argon too. On the experimental side a repetition of some 
of the experiments is desirable, notably the highest density krypton gas 
and the triple point argon. 
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